Experience in the Use of an RDBMS in Multiprocess Interactive Simulation

Carsten Gabrisch and Mike Davies

Information Technology Division
Defence Science and Technology Organisation
Department of Defence
PO Box 1500 Salisbury
South Australia 5108

Abstract A relalional database management system (RDBMS) can be a powerful tool in the design and development of computer
software. Having 1o take a database view of the project can lead to better storage, management and access of data by the software.
Data is stored in specific formats which makes for easier software development and network configuration makes coordination of
team effort easier. Such benefits facilitate rapid prototyping and the data management qualities of an RDBMS allow the developer
to concentrale on the more important features of the software, namely the overall functionality. This is particularly true in the
case of discrete event simuiations. This paper illustrates the benefits in using an RDBMS to assist in the overall design and

development of a muitiprocess interactive simulation.

1. INTRODUCTION

As stressed in the Australian Defence White Paper of 1994
(AGPS {19941, effective Command, Control,
Communication and Intellipence {C31) for Australia’s forces
is fundamental to the successful conduct of Australian
Defence Force (ADF) operations, in any conflict or
peacetime activity. Having the ability to study the
effectiveness of existing and future military €31 systems is
essential. Information Technology Division (JTD) of the
Defence Science and Technology Organisation (DSTO) is
sponsored to develop modelling and simulation tools to
enable such studies to be conducted.

A typical C31 system structure for the defence of Australia
might involve eclements of the three services and
accommodate conflict at ali levels. The strategic level
embraces the higher echelons of the military and political
organisations concerned and hence addressing this level
requires addressing decision-making at lower (operational
and tactical) levels also. The C3I architecture can be pictured
as a compiex network of nodes and links. The nodes are
typically centres of decision making; information processing
or filiering; information transfer; or combinations of these.
The links are the inter-node communication channels that
transriit information of many forms, In a time of conflict, the
€31 system might be stimulated by intelligence concerning
the detection of poteatially hostile enemy activity, This
would consequently cause the generation and passage of
internal information that might result in changes in readiness
and maybe, the deployment of reaction forces. To study the
effeciiveness of military C31 systems requires analysis of the

impact of C31 procedures and lechnologies on the overall
military missior concerned. The term mission is uscd here o
describe, for example, an operation, battle or exercise.

The reguirement on ITD is not o develop tools specific to
any particular military service or level of conflict, but rather
to create a general purposc suite of toofs, specific
instantiations of which could be used to address any
particular study at hand. It was decided that the main means
of achieving this suite of lools and the associated expertise
would be through the process of developing the Distributed
Interactive C31 Effectiveness (DICE) simulation (Davies
[1993]). Making the most efficient use of minimal resources
is particularly important in this project.

2. FEATURES OF THE DICE SIMULATION

A typical scenario to be represented by the DICE simulation
can be regarded as configured about a complex set of nodes
and links that represents the central C3I network. The
players in the DICE simulation generaily form the nodes of
this centra} network. Players might represent individual, or
groups of, commanders in a C31 system or an apggregated
representation of some other (31 system entity. The
interactive nature of the DICE simuiation will allow the
decision-making practices of real commanders to be injected
and accommodated. Such human players will need, however,
to be complemnented by a number of artificial ones (artificial
agents) in a manner whereby the two types can communicate.

— 34—

I real C31 systems, communications between nodes can take
many forms including both formatted and unformatied
messages; tables of data; graphical displays; and video
images. In the simuiation, all forms of communication are
represented by the passage of formatted textual messages
which either bear a direct resemblance to a military message,
or accompany or summarise information of 2 different form.

The central network can be considered to be surrounded by
an external environment or node that encompasses any
aspects thal are not explicitly represented in the central
network but which, nevertheless, form important
contributions to the scenario being addressed.
Communication between the central environment and the
external node is again achieved through the use of messages
with the external node injecting stimuli into the central
network of the scenmario. What Hes outside the central
network and what les within depends on the depth and
breadth of the scenario being simulated. The conceplual
external node embraces such aspects as enemy activity,
battlefield information; and sensor information. Batle
simulations, war games and other simple models are
employed, as needed, to address the tactical levels. These are
interfaced with the main simulation in order for the
represented C31 system to have impact on the miliary
mission concerned and hence allow evaluation of the
systern's effectiveness.

The overall structure, requirements and developments to date
of the DICE simulation are best presented with reference 1o
Figure | which is a breakdown of the functional areas of the
PICE simulation environment (Davies, Gabrisch [1995]).
Indicated by the uppermost row of this figure are the players
in the simulation, namely the simulation controfler or
analyst; artificial agents; and human commanders.
Feripheral units in the DICE environment include any war
games and battle simulations that may be employed plus the
command support sysiems (CS8) that may be required by the
human players (Peripheral units are interfaced via tailored
Peripheral Unit Interfaces (PUT)). Players plus peripheral
units are the nodes in the overall DICE simulation, ie the
central network plus the external environment.

The simulation kernel is the main event-stepping engine of
the DICE simulation. The kernel controls time
synchronisation and execution rate of the distributed
processes and can be configured such that the simulation can
run in real or non-real time. The simulation is capable of
being paused, advanced and resumed as required by the
simulation controller. The cumrent simulation is designed
ground two main events: message submission, involving
subrission of a message by a node for transmission; and
message receprion, concerning the receipt of a message by a
node (Dravies [1993]).

SIMULATION | |4 »| ARTIFICIAL COMMANDER | {, . | COMMANDER ||, COMMANDER
CONTROLLER AGENTS i 2 3
i ————————1 [T 1] o 1] i 1
L3 F:
WAR GAME 4
RUN-TIME COMMAND
PRE & POST SIMULATION SUPPORT
SIMULATION KERNEL SYSTEM !
ANALYSIS
FACILITY
e i ———
g g]
COMMAND
SUPPORT
SYSTEM 2
T W oammoss———— |
COMMAND
BATTLE BATTLE SUPPORT
SIMULATION 1 SIMULATION 2 SYSTEM 3

[] BT 7 T st

Figure 1: Functional diagram for DICE simslation environment

— 315 —

Artificial agents, human player interfaces, PUL the
simulation kernel and controller facilities arc separate
processes which may or may not execute on the same
processor. The simulation is primarily being developed in the
ANSI'C' programming language using Sun SPARCstations,
The Ingres relational database management system
(RDBMS) and associated utilities (Ingres Corporation
[1991)) have featured strongly in the development of the
following capabilities

s Time and cxecution rate synchronisation allowing real-
time and non real-time execution;

2 Access to shared data by multiple processes;

o Ability to pause, resume and advance the siruiation;

» Message submission and reception; and

» Run-time monitoring and control.

3. THE USE OF AN RDBMS IN THE DICE
SIMULATION
The communication architecture assoclated with the

simulation is illustrated in Figure 2. Each node has an
associated mailbox through which it receives incoming
messages; outgoing messages are placed directly on the
simulation eveni queue, as message submission events, for
maiting to the intendled recipient, The mailboxes are Ingres
database tables; a summary of the main tables used in the
DICE simulation is given below

connectivity: stores the nodes a link connects and

transmission time and availabifity of the link.

entities: stores a description of the nodes and links in the
scenario.

event: stores message submission and message reception
eVenis.

mailbox, stores the message number of the incoming
messages (o a node.

message content: stores the contents of the messages.

message informarion: stores the message number, node
which sent the message, the link the message is sent along
and the time the message was transmilled.

message location: stores where a message is located in the
simulation and at what time it arrived.

scenario information: stores the name and Lhe time duration
of the scenario.

time synchronisation: stores the time of the last time
synchronisation, inserted by the simulation kernel, and the
execution rate,

CONTROLLER AGENT 1 COMMANDER |
£ F-Y
r
T : [
MAILBOX MAILBOX MAILBOX
CONTROLLER AGENT | i COMMANDER 1 | 7
-y
/]
>’ o fl
T !
E
DICE g
SIMULATION TN
KERNEL T
S
l_r"_“:::“ f
=t
C::] PERIPHERAL INPUT
UNIT INTERFACE BATSIM
MAILBOX ® BATSIM/CSS | JCSS §
BATSIM/CSS | |7 Wl OUTPUT

Figure 2: DICE simulation kernel and communication

—310—

Database event features that Ingres provides. are also
conveniently utiised in the simulation. Database events can
be set up 1o be triggered when certain actions are carried out
on specified tables, or created o be resident in the database
and then raised by embedded database statements. Processes
register for these events and are informed when such cvents
occur, thus giving effectively an event-driven characteristic.
Database events that feature in the DICE simulation, along
with what processes register for them are discussed below -

Event table event | when a message submission event is
inserted into the fable a datsbase ovent is raised. The
simulation kernel registers for this cvent.

Mailbox eveni © when a message number is serted into a
node’s maiibox a database ovent is raiscd. The process
corresponding to the node associated with a mailbox registors
for that mailbox event,

Pause simulation event - this database event resides in the
DICE database. Al? processes register for this dalabasc event,

Resume simulation event this database event resides in the
DICE database. All processes register for this database event,

Start simulation evear : this database event resides in the
BICE database. All processes register for this database cvent,

Stop simulation event : this database event resides in the
DICE database, All processes register for this databasc cvent,

Time synchronisation event : when values in the fime
synchronisation lable are cither inserted or updated
database event is raised. All processes (with the excoption of
the kernel) register for this database event,

The manner in which the databasc tables and asscciated
cvents are used is ouilined in the following sections that
correspond to pre-simulation scenario implementation, run-
time execution and post-simulation activities.

3.1 Pre-simulation

The scenario that is to be simutated is loaded into the entities
and connectivity tables. The entifies table stores a description
of the nodes and links that are present in a scenario. Part of
this description is whether the node is an artificial agent,
human player or a PUL The connectivity table stores which
nodes a link connects, the time taken o send 2 message
along that link and whether that link is availsble for use.

When the simulation kernel is started il comects to the
DICE database. The kerncl then registers [or database evenls
that are raised when the simulation is starled, stopped,
paused or resumed and when a message submission event is
mseried into the evemt table. Any information from a
previous simulation is deleted from the event message
information, message location and message confent tables,

Onee the scenarie is loaded a databasc tble is created for
each node and acts as the node’s mailbox.

he simulation comtrolier can program messages to be
received by nodes, at given times in the simulation. before
the simulation is started, These messages are placed into the
appropriate tables and a messuge reception event is placed in
the event table. Such events arc referred to as independent
external stimuli since they are pre-scheduled and hence
independent of activities that occur whilst the sinmlation is
ranaing (Davies [1993]).
For all nodes in the enfiies table shich are either an
artificial ageni or a PUJ their respective processes are started,
Thess processes vegister for relevant databsse events. The
processes then wait for the ficst fime to be inserted inte the
tie synchronisation table,

From the scenario information table the tme doration of the
simulation is read. The svsiem ciock is read to obtain the
start time, in terms of wall clock time, of the simulation, The
simulation time 15 82t to zers () or wall clock fime. A time
factor is also set (by the controller). which determines the
rate of execution: eg a value of ane {1) for real time and two
(2) for twice real time. The simulation lime and the Hme
fhctor is then inserted into the fime svichronisation able. A
database event i raised for which all processes in the
sivation arc registered. Al artificial agents, PUL human
plaver interfuces and the event handier of the kernel are then
$01 TUnnIng.

3.2 Run-time

The event handler of the simulation kernel is 2 continuous
loap which deals with raised database evenis. time
synchronisation and time based events. The {irst object of the
loop is to check i any database events have been raised and
if 30 determine the database event type. I a stop simplation
database event is raised or the simulation time has reached a
preset siop Hme the Ioop is caded and the keruel attends o
its post simulation activities. When an event table dainbase
event is raised 4 message submission sub-procedure, detailed
fater, deals with this evenl. The details of this sub-procedrre
are explained fater. If the databuse svent is of type panse
stmulation the simulation and all the associated processes ate
paused. These include all artificial agents; the homan
commander inferface facilities and the PUl which
consequently pause the peripheral units if appropriate. The
kernel then wails until a reswme simulation database event is
rassed. During a pause in the simulation the simulation
controller can sel the simulation time to some time in the
futare and can alter the Hme factor. This new ime is cntered
into the fime yynchronisation wble, If the time in the fime
svachronisation table has not been altered then the
simulation and all other processes resume at the time they
were paused. IT the time in this tablc has been altered
processes resume @t the new time. Processes will also adopt g
new execution rate based on the now time factor if required.

= 31T -

Once any database events have been dealt with the system
clock is read and simulation time is updated. H necessary,
such updates can be conveved to other processcs, for
synchronisation purposes, by updating the fime
synchronisation table with the new simmlation time. This
raises a database event in all the recipient processes and they
in turn update their simulation time accordingly.

If there arc any message reception events in the event table
and their scheduled time is equal to or less than simulation
{ime then a sub-procedure deals with these reception events

3.2.1 Message Submission Sub-procedure

The message submission sub-proccdure processes any
message submission evends that are pending, in the event
table. A databasc query obtains the message pumber and the
scheduled time of the event from the even! table, the link the
message is to be placed on from the message information
table and the link availability and transmission time from the
connectivity table. If the link is available then the message
submission event in the event table is updated to 2 message
receplion event whick is scheduled to occur at a time equal
to the scheduled time of the message submission eveat plus
the transmission time of the link. All message reception
events in ihe event table are checked to find the message
recepiion event with the minimum scheduled time.

3.2.2 Message Reception Sub-procedure

The message reception sub-procedure processes any message
receplion cvents in the event table where the simulation time
has reached their scheduled times. A dalabase query obtains
the message mumber from the event table, the fink the
message is on from the message information table and the
node that is to roceive the message from the comnmectivily
table. The message number is then inserted into the mailbox
table of the node that is to receive the message. The
processed message reception cverd is deleted from the event
table. Once all message reception events, with the same
scheduled time, have been processed the event table is
searched to find the message reception evemt with the
minimum scheduled time.

33 Post simulation

Once the simuiation is stopped the mailbox tables are deleted
from the databasc as they are no longer necessary. All
information of the simulation is stored in the tables of the
DICYE database and can be retrieved after the simulation for
analysis purposes.

Post-simuiation analysis includes inspection of C3[system
characieristics such as bottlepecks: command and
information fow parameters; and cifectiveness measures, A
history and review function is also needed that provides ihe
ability to sclest and replay aspects of the simulation,

including analysis of the impact of key comunands or
decisions made by artificial or human players. Configaration
of the simulation kernel abeout an Ingres database will
facilitate establishment of this analvsis capability.

4. DISCUSSION

It should be noted that the communication architecture
puttined in this section is intended for the DICE simulalion
alone and limited to locally distributed processes. Remote
participation By human plavers and the interfacing to
peripheral units that are distributed geographically are
expected to be achieved through cbservation of intcrnational
Distributed Interactive Simulation (DIS) protocols.

The use of an RDBMS in the design and development of the
DICE simulation has resufted in significant benefits. The
ability to quickly design and build tables to describe the
underlying information that the simufation will maunipulate
and generate is particularly wseful in the early stages. This
paper has iliustrated the usc of such tables in the DICE
simulation example, as well as the powerful database event
feature that the Ingres RDBMS provides. In a multiprocess
environment. where processes can be distributed over a
number of processors, the importance ol controlling access
and updates to shared dala is critical. An RDBMS typically
has established features 1o facilitate prevention of
undesirables such as ‘simullancous’ updates to data and
deadlock on information.

Mot specifically covered in this papes. is the use of the
Windows 4GL programming capability associated with the
Ingres RDBMS {Ingres Corporation {19917). Windows 4GL
allows rapid development of GUI for which information
needs 1o be obtained from the relational database. The
proximity of this GUI development tool with the database,
circumvents or makes easier much software code writing 10
interact with and manipulate the information in the database.
Windows 4GL was used to develep some of the facilities
associated with the simulation controller and humaa players.

The possible disadvantages of using an RDBMS in lhe
manner described, are associated with data manipulation
through continual hard disk rather than memory access, and
the performance overheads thal might resalt. When executed
in an interactive mode, the DICE simulation is required to
run in real time; also, to allow credible analysis to be
conducted, latency in the processing of message submissions
and receptions needs to be kept within tight tolerances, Hard
disk access is slower than access of memory, and the effect of
ihis on simulation performance will be continnaily inspected
ag applications of the DICE simulation are addressed; no
problems have been experienced to date. Although faster,
manipulation and storage of simulation data in memory is
looked at unfavourably to some extent since a lot of
information ig likely to he generated during a simulation,
which might necessitate some periodic saving to disk. Also
in the current configuration, if the simulation was
unexpectedly terminated (by power [ailure, lor example) for

w318 —

some reason during execution then it could quite easily be
resumed from that point since s state at that instant would
have been captured entirely in the database. This wonid be
difficult to achicve by other means,

The advantages of using a commercial RDBMS package,
rather than writing one’s own, are clear since it iy not only
the relational database that is useful but also the access
control and visualisation and moenitoring tools of the
management systen.

3. CONCLUSIONS

This paper has highlighted the use of an RDBMS in a
distributed mulliprocess simulation to help represent and
manage key features of the simuiation. Adoption af the
RDBMS and associaled utllities wosulied inm casier
establishment of information sharing and control
capabilities, and quicker development of user interfaces that

allow inspection and manipulation of the dala in the
relational database. Such benefits aflowed resources to be
applied to other important development arcas of the
simufation. Similar benefits could be obtained through the
use of an RDBMS in other projects.

6. REFERENCES

Australian - Government Publishing Service, Defending
Australia, Defence White Faper, Canberra, 1994,

Davies, M., Strategic command, control, communication and
intelligence (C3]) simulation activitics, roceedings of Int.
Cong. on Meodelling and Simulation, Perth, Australia,
551-596, 6-10 December 1993,

Davies,M and C. Gabrisch, The Distributed Interactive €31
Effectiveness (DICE) Simulation Project: An Overview,
proceedings of Sth COF&BR Conference, Orlando,
Florida, 15-20, May 1993,

Ingres Corporation, Introducing Ingres, California, 1991

310 —

